

Ministry of the Ministère de Environment l'Environnement

Drinking-Water Systems Regulation O. Reg. 170/03

Part III Form 2 Section 11. ANNUAL REPORT.

Drinking-Water System Number:
Drinking-Water System Name:
Drinking-Water System Owner:
Drinking-Water System Category:
Period being reported:

WW No. 240000075
Vermilion Water Tre
WALE

Municipal and Privat
January 1st, 2020 to 3

Vermilion Water Treatment Plant
VALE
Municipal and Private Water Works
January 1st, 2020 to December 31st 2020

<u>Complete if your Category is Large Municipal</u> Residential or Small Municipal Residential

Does your Drinking-Water System serve more than 10,000 people? Yes [\checkmark] No []

Is your annual report available to the public at no charge on a web site on the Internet?

Yes [**V**] No []

Location where Summary Report required under O. Reg. 170/03 Schedule 22 will be available for inspection.

Hardcopy Address:

VALE
18 Rink Street
c/o Water Plants
Copper Cliff, Ontario, P0M 1N0
Web Address:

www.greatersudbury.ca

Complete for all other Categories.

Number of Designated Facilities served:

0

Did you provide a copy of your annual report to all Designated Facilities you serve?

Yes [] No [**√**]

Number of Interested Authorities you report to: 0

Did you provide a copy of your annual report to all Interested Authorities you report to for each Designated Facility?

Yes [] No [**√**]

Note: For the following tables below, additional rows or columns may be added or an appendix may be attached to the report

The Vermilion Water Treatment Plant also supplies water to the plumbing works system that is owned and operated by VALE for use by its employees and its process. The Vermilion Water Treatment Plant as owned and operated by Vale has developed a comprehensive Drinking Water Quality Management System as required by legislation. QMS Policy Statement: "Vale is committed to providing safe drinking water to the City of Greater Sudbury municipal drinking water distribution system, in accordance with all applicable legislative and regulatory requirements, as well as to the maintenance and continual improvement of a Quality Management System".

Ministry of the Ministère de Environment l'Environnement

Drinking-Water Systems Regulation O. Reg. 170/03

List all Drinking-Water Systems (if any), which receive all their drinking water from your system:

Drinking Water System Name	Drinking Water System Number
Vermilion Distribution system	260006789

Did you provide a copy of your annual report to all Drinking-Water System owners that are connected to you and to whom you provide all its drinking water?

Yes [V] No []

Indicate how you notified system users that your annual report is available and is free of charge.

[V] Public access/notice via the web

www.greatersudbury.ca

[V] Public access/notice via a newspaper

[] Public access/notice via Public Request

[] Public access/notice via a Public Library

[V] Public access/notice via other method

VALE - Copper Cliff Supervisor's office - by appointment call (705) 682-6153

Describe your Drinking-Water System

In 1972, INCO Limited constructed the INCO Vermilion Water Treatment Plant, in order to produce process water for the INCO mining operations as well as potable drinking water for INCO staff and the surrounding communities. In 2007, INCO became CVRD INCO and a name change to Vale Inco was completed late in the year. As of 2010, now named VALE, VALE's Vermilion Water Treatment Plant is designed for a total production capacity of 81,800 m3/day (21.7M USGPD) and is supplied with surface water from the Vermilion River.

All process equipment is installed inside a heated and ventilated building, except for the caustic and alum storage tanks that are installed outside. The water treatment plant consists of the following main elements:

- One rapid mix tank:
- One hydraulic retention time tank;
- One PULSATUBE sludge blanket type clarifier;
- Five AQUAZUR V gravity sand filters;
- One clear-well located below the filters;
- Treated and backwash water vertical turbine pumping station;
- Air scouring blower and air instrument compressor room;
- Chemical storage and dosing system;
- External heat traced caustic and alum storage tanks;
- Liquefied Chlorine (tonners) stored and used in Chlorination room;
- Plant control room and laboratory room.

Ministry of the Ministère de Environment l'Environnement

Drinking-Water Systems Regulation O. Reg. 170/03

Process Flow Description

- 1. Raw water is pumped from the Vermilion River to the VALE Vermilion WTP.
- 2. Raw water flow control is achieved with a by-pass pipe and control valve. The by-pass control valve automatically adjusts based on the water level in the clarifier. When the level in the clarifier rises, the by-pass flow control valve opens to decrease the flow to the plant. The by-pass is connected to the U-drain of the WTP.

List all water treatment chemicals used over this reporting period

- Aluminum Sulfate
- Sodium Hydroxide
- Liquefied Chlorine
- Hydro-fluosilicic Acid
- Polyfloc CP1160 35%
- Polyphosphate (Flogard POT6102)

Were any significant expenses incurred to?

Vale has also complied with the requirement for DWQMS and has received full scope accreditation from SAI- Global on behalf of the MECP. Vale has completed all internal and external audit cycles with action taken on findings accordingly.

- [] Install required equipment
- [X] Repair required equipment
- [X] Replace required equipment

Please provide a brief description and breakdown of monetary expenses incurred

Several air release and drain valves shacks repaired	Replaced two alum pumps
New HFS line repairs (started in 2020) ongoing.	HFS, Caustic Day Tank and Polyphosphate NDE inspections
Secure surface wash pipe supports	Replace #3 compressor
Fire line repaired inside VWTP	Purchased new UPS system for Delta V (SCADA system)
Replaced a sludge extraction valve	Repaired automatic transfer switch for backup genset
Repaired polymer line.	Order new Clay-val for #4 Booster Pump
Commission new E house at Vermilion River	Engineering for 5MG tank, new booster station, #1
Pump House	Raw Water Line replacement, new air compressors, replacing the Foxboro system, new Ehouse, new genset for VWTP
New chlorine sensors for exterior of plant	

Provide details on the notices submitted in accordance with subsection 18(1) of the Safe Drinking-Water Act or section 16-4 of Schedule 16 of O.Reg.170/03 and reported to Spills Action Centre:

Incident	Parameter	Result	Unit of	Corrective Action	Corrective
Date			Measure		Action Date
June 17	Planned Power Outage	NA	NA	Notification	June 17

Microbiological testing done under the Schedule 10, 11 or 12 of Regulation 170/03, during this reporting period.

	Number of Samples	Range of E.Coli or Fecal Results (min #)-(max #)	Range of Total Coliform Results (min #)-(max #)	Number of HPC Samples	Range of HPC Results (min #)-(max #)	
Raw	52	0– (NDOGT)	0 – (NDOGT)	N/A	N/A	
Treated	52	0	0	52	<10 - 10	
Plumbing Works	104	0	0	104	0 – 20	
N/A=Not Applicable NDOGT= Overgrowth						

Operational testing done under Schedule 7, 8 or 9 of Regulation 170/03 during the period covered by this Annual Report.

	FINISHED WATER ANALYSIS							
	OPERATOR BENCH ANALYSIS			CO	NTINUOUS MONITORS			
	Number of Grab Samples	Range of Results (min #)-(max #)		Number of Samples As Per Note Below	Range of Results (min #)-(max #)			
Turbidity	732	(0.047)-(0.791) NTU		8760	$(0.00 \ NTU) - (1.02 \ NTU)$			
Chlorine	2122	(1.46)-(2.59) mg/L Free		8760	(0.00) - (4.22) mg/L Free			
Fluoride (If the DWS provides fluoridation)	726	(0.41)-(0.92) mg/L		8760	(0.00) - (2.00) mg/L			

NOTE: For continuous monitors use 8760 as the number of samples.

NOTE: Record the unit of measure if it is not milligrams per litre

^{**}Ranges min & max due to calibrations and equipment servicing captured on trending **

Summary of additional testing and sampling carried out in accordance with the requirement of an approval, order or other legal instrument.

Date of legal instrument issued	Parameter	2020 Date Sampled	Result	Unit of Measure
Municipal Drinking Water	TSS U-Drain	Jan 7	< 0.67	R-Grab Sample mg/L
License # 191-101 Schedule	flow to	Jan 7	< 0.67	Comp U-Drain mg/L
C, Section 4.4, issued March 22, 2016	Environment	Feb 4	< 0.67	R-Grab Sample mg/L
Wiai Cii 22, 2010	measured in	Mar 3	< 0.67	R-Grab Sample mg/L
	mg/L TSS	Apr 7	56.0	R-Grab Sample mg/L
	_	May 5	2.00	Comp U-Drain mg/L
		May 5	11.0	R-Grab Sample mg/L
		June 2	1.00	R-Grab Sample mg/L
		July 7	1.30	R-Grab Sample mg/L
		Aug 4	1.00	R-Grab Sample mg/L
		Sept 8	2.70	Comp U-Drain mg/L
		Sept 8	2.70	R-Grab Sample mg/L
		Oct 6	1.00	R-Grab Sample mg/L
		Nov 3	2.30	R-Grab Sample mg/L
		Dec 1	1.70	Comp U-Drain mg/L
		Dec 1	1.30	R-Grab Sample mg/L

Summary of Inorganic parameters tested during this reporting period or the most recent sample results

Parameter	Unit of Measure	MDL Method Detection Limit	Result Year	Exceedance	
Antimony	ug/L	0.5	<0.50 <mdl< th=""><th>January 24</th><th>Nil</th></mdl<>	January 24	Nil
Arsenic	ug/L	1.0	<1.0 <mdl< th=""><th>January 24</th><th>Nil</th></mdl<>	January 24	Nil
Barium	ug/L	1.0	10.0 January 24		Nil
Boron	ug/L	2.0	5.0 January 24		Nil
Cadmium	ug/L	0.10	<0.1 <mdl< th=""><th>January 24</th><th>Nil</th></mdl<>	January 24	Nil
Chromium	ug/L	1.0	< 1.0 < MDL	January 24	Nil
Mercury	ug/L	0.1	<0.1 <mdl <b="">January 24</mdl>		Nil
Selenium	ug/L	0.5	<0.5 <mdl< th=""><th>January 24</th><th>Nil</th></mdl<>	January 24	Nil

Summary of Inorganic parameters tested during this reporting period or the most recent sample results

Parameter	Unit of Measure	MDL Method Detection Limit	Result Year	Exceedance	
Uranium	ug/L	1.0	< 1.0 < MDL	Nil	
Fluoride	mg/L	0.05	0.30	January 24	Nil
Lead	ug/L	0.1	< 0.1 < MDL	January 24	Nil
Sodium	mg/L	0.10	15.5	January 24	Nil

Parameter	Unit of Measure		Result Year				
		Jan 7	Apr 7	Jul 7	Oct 6		Exceedance
Nitrate	mg/L	< 0.05	0.15	0.08	0.07		Nil
Nitrite	mg/L	< 0.05	< 0.05	< 0.05	< 0.05		Nil
Haloacetic Acids	ug/L	<8	24	87	61	Latest annual average 45	½ mac

Summary of Organic parameters sampled during this reporting period or the most recent sample results

		Result Va				
		Year 202	Unit of			
Parameter	Jan 7	Apr 7	Jul 7	Oct 6	Measure	Exceedance
Alachlor	<0.28 < MDL				ug/L	Nil
Atrazine + N-dealkylated metobolites	<0.28 <mdl< th=""><th></th><th></th><th></th><th>ug/L</th><th>Nil</th></mdl<>				ug/L	Nil
Azinphos-methyl	<0.21 <mdl< th=""><th></th><th></th><th></th><th>ug/L</th><th>Nil</th></mdl<>				ug/L	Nil
Benzene	<0.1 <mdl< th=""><th></th><th></th><th></th><th>ug/L</th><th>Nil</th></mdl<>				ug/L	Nil
Benzo(a)pyrene	<0.009 <mdl< th=""><th></th><th></th><th></th><th>ug/L</th><th>Nil</th></mdl<>				ug/L	Nil
Bromoxynil	< 0.0895 < MDL				ug/L	Nil
Carbaryl	<1.0 <mdl< th=""><th></th><th></th><th></th><th>ug/L</th><th>Nil</th></mdl<>				ug/L	Nil
Carbofuran	<2.0 <mdl< th=""><th></th><th></th><th></th><th>ug/L</th><th>Nil</th></mdl<>				ug/L	Nil
Carbon Tetrachloride	<0.20 < MDL				ug/L	Nil
Chlorpyrifos	<0.21 <mdl< th=""><th></th><th></th><th></th><th>ug/L</th><th>Nil</th></mdl<>				ug/L	Nil
Diazinon	<0.21 <mdl< th=""><th></th><th></th><th></th><th>ug/L</th><th>Nil</th></mdl<>				ug/L	Nil
Dicamba	<0.336 <mdl< th=""><th></th><th></th><th></th><th>ug/L</th><th>Nil</th></mdl<>				ug/L	Nil
1,2-Dichlorobenzene	<0.30 < MDL				ug/L	Nil
1,4-Dichlorobenzene	< 0.30 < MDL				ug/L	Nil
1,2-Dichloroethane	< 0.30 < MDL				ug/L	Nil
1,1-Dichloroethylene						Nil
(vinylidene chloride)	<0.3 <mdl< th=""><th></th><th></th><th></th><th>ug/L</th><th></th></mdl<>				ug/L	
Dichloromethane	<1.0 <mdl< th=""><th></th><th></th><th></th><th>ug/L</th><th>Nil</th></mdl<>				ug/L	Nil
2-4 Dichlorophenol	<0.2 <mdl< th=""><th></th><th></th><th></th><th>ug/L</th><th>Nil</th></mdl<>				ug/L	Nil
2,4-Dichlorophenoxy acetic acid (2,4-D)	<0.336 <mdl< th=""><th></th><th></th><th></th><th>ug/L</th><th>Nil</th></mdl<>				ug/L	Nil

Summary of Organic parameters sampled during this reporting period or the most recent sample results

recent sample re		Result Va			Unit of				
	Year 2020								
Parameter	Jan 7	Apr 7	Jul 7	Oct 6	Measure	Exceedance			
Diclofop-methyl	<0.112 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
Dimethoate	<0.21 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
Diquat	<0.6 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
Diuron	<6.0 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
Glyphosate	<20.0 < MDL				ug/L	Nil			
Malathion	<0.21 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
2-Methyl-4-									
chlorophenoxyacetic	<5.59 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
acid									
Metolachlor	<0.14 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
Metribuzin	<0.14 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
Monochlorobenzene	<0.5 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
Paraquat	<0.30 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
Pentachlorophenol	<0.3 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
Phorate	<0.14 < MDL				ug/L	Nil			
Picloram	<0.0783 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
Polychlorinated	<0.06 <mdl< td=""><td></td><td></td><td></td><td>mg/L</td><td>Nil</td></mdl<>				mg/L	Nil			
Biphenyls(PCB)	<0.00 < WIDL				mg/L				
Prometryne	<0.0699 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
Simazine	<0.21 <mdl< th=""><th></th><th></th><th></th><th>ug/L</th><th>Nil</th></mdl<>				ug/L	Nil			
					Latest annual				
THM ug/L	37.0	31.6	92.1	71.5	average	½ mac			
				1	58.1	3717			
Terbufos	<0.14 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
Tetrachloroethylene	<0.30 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
2,3,4,6-	<0.2 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
Tetrachlorophenol						3717			
Triallate	<0.14 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
Trichloroethylene	<0.20 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
2,4,6-Trichlorophenol	<0.20 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
Trifluralin	<0.14 <mdl< td=""><td></td><td></td><td></td><td>ug/L</td><td>Nil</td></mdl<>				ug/L	Nil			
Vinyl Chloride	<0.10 < MDL				ug/L	Nil			

 $\mathbf{MDL} = Method\ Detection\ Limit$

List any Inorganic or Organic parameter(s) that exceeded half the standard prescribed in Schedule 2 of Ontario Drinking Water Quality Standards.

Parameter	Result Value	Unit of Measure	Date of Sample
THM Annual Average	54.4	ug/L	Annual Average
Haloacetic Acids Annual Average	45	ug/L	Annual Average

(Only if DWS category is large municipal residential, small municipal residential, large municipal non-residential, non-municipal year round residential, large non municipal non residential)