Lake Water Quality Program Environmental Planning Initiatives

St. Charles Lake Aquatic Vegetation Mapping Report 2017 and 2022

Overview

The City of Greater Sudbury contains over 330 freshwater lakes, more than any other municipality in Canada. These lakes provide citizens and tourists with a vast array of recreational opportunities and are a drinking water source for many lakeshore residents. Over the last few decades, local lakes have come under threat of several aquatic invasive species, including Eurasian Watermilfoil, an aggressive, dense-growing aquatic plant that can have negative effects on aquatic wildlife and recreational activities. Currently, Eurasian Watermilfoil (EWM) is present in 18 Greater Sudbury lakes.

For the past few years, the City's Lake Water Quality Program has undertaken several education and awareness campaigns on aquatic invasive species and these efforts continue to expand. In 2017, the Lake Water Quality Program repeated the aquatic vegetation mapping efforts originally conducted in 2014 on several local lakes to better understand the spread and impact of Eurasian Watermilfoil. An updated, more rigorous, and robust sampling protocol was developed that resulted in identifying native and invasive aquatic plant species within the survey lakes. The protocol consists of systematic, quantitative, and replicable sampling to track changes in the extent of all aquatic plant species in the sampled lakes over time. This report reviews the 2017 and 2022 aquatic vegetation mapping undertaken on St. Charles Lake and assesses the effectiveness of the protocol.

Lake Description

St. Charles Lake is in Broder and McKim townships in the Junction Creek Watershed. The lake has a total surface area of 41.3 hectares, a shoreline perimeter of 5.1km and a maximum depth of 6m [1]. The lake's north, east and south shores are developed with residential properties while the western shoreline is currently undeveloped. There are currently 99 developed residential properties, 3 islands with seasonal properties, 1 institution and 1 municipal park on the lake. St. Charles Lake has no public boat launches although canoes and kayaks can access the lake through the municipal park on Brenda Drive. Several of the lake's residents operate their motorized boats and personal watercraft for recreational activities.

The City of Greater Sudbury has conducted spring phosphorus sampling on St. Charles Lake since 2001 to monitor the trophic status of the lake. The average spring total phosphorus value between 2001-2021 (Figure 1) is 11.85 μ g/L, which indicates that the lake is moderately productive (mesotrophic).

An urban lakes fisheries study was conducted in 2014 on St. Charles Lake by staff and students of the Cooperative Freshwater Ecology Unit using the Nordic Index Netting protocol. Species found included Brown Bullhead (*Ameiurus nebulosus*), Northern Pike (*Esox Lucius*), Pumpkinseed (*Lepomis gibbosus*), Walleye (*Sander vitreus*) and Yellow Perch (*Perca* flavescens). Iowa Darter was found in previous surveys in 1990 and 2009 but was not found during the 2014 survey [2].

Methodology

The Lake Water Quality Program's aquatic vegetation sampling protocol was modified from the baseline monitoring protocol developed by the Wisconsin Department of Natural Resources [3]. This protocol employs a point-intercept sampling design that overlays a number of geo-referenced points in a grid pattern over the lake to ensure that year over year results are comparable. The sampling protocol permits the assessment of all aquatic plant species as well as an estimation of species richness, frequency, abundance, and maximum depth of colonization within the lake. The 2017 survey of St. Charles Lake was the first year this survey technique was used and as such only species presence/absence was recorded at each site. In addition to species presence/absence, the 2022 survey recorded dominant species and relative density of total vegetation at each sampling location.

Point Intercept Map

The protocol outlines the basic information needed to create an evenly distributed grid that is overlaid onto a lake's littoral areas to ensure consistent mapping throughout the water body. The littoral areas of a lake are those where sunlight can penetrate down to the sediment where the most abundant plant growth is found. The sampling protocol developed for these surveys defines the littoral area as occurring in 6 meters, ~20ft, of water depth or less.

The sampling grid resolution was calculated from the following factors: 1) the lake's area in hectares, 2) the percentage of the lake's littoral area, and 3) the shoreline development factor or 'SDF'. The SDF is the ratio of the length of the shoreline to the circumference of a circle equal in area to that of the lake; it is not a measure of housing development on a given lake [4]. A higher SDF signals greater complexity

of a given shoreline, which allows for increased development of the aquatic plant communities in the littoral area.

Following the protocol, the number of sampling locations on St. Charles Lake was determined to be 304 points, see Figure 2. The number of sampling points was then used to create an evenly disturbed grid onto the littoral areas of the lake. Each point is geo-referenced using NAD83 UTM coordinates (see Appendix A – Coordinates).

Figure 2. Map of geo-referenced sampling points for St. Charles Lake used for 2017 and 2022 aquatic plant surveys.

Field Survey Techniques & Equipment

Field surveys for the aquatic vegetation mapping require relatively little equipment. Foremost is the rake sampler, which comes in many forms. The City uses the same rake sampler for each lake to ensure consistency. The rake sampler used is a 19-tine thatching rake with the head removed and secured to a 50' section of rope, see Figure 3. The thatching rake was selected for its double-sided design, low cost and its ability to effectively remove and hold aquatic vegetation while sampling. A Garmin GPSMAP 64S handheld global positioning system, GPS, was used to navigate to each sampling location. The location reported by the GPS is accurate to within 15 meters and will generally have accuracy within 5 to 10 meters under normal conditions [5].

Figure 3. Modified thatching rake used for aquatic vegetation sampling.

Field Surveys

Aquatic vegetation sampling on St. Charles Lake in 2017 took place between July 31 and August 8 and between August 9 and August 12 in 2022. The sampling period ensured that the aquatic vegetation within the lake was near peak growth and comparable year over year. At each sampling point, the rake was tossed into the water within 1-3 meters of the watercraft and dragged across the substrate before being pulled into the watercraft. Rake fullness/vegetation density was recorded in 2022 to determine density of overall plant growth at each site with individual species being recorded and identified. Rake fullness/vegetation density measurements were not made during the 2017 survey. After each rake toss, the watercraft was relocated to compensate for any movement that may have occurred. A total of three (3) rake tosses were completed at each sampling point to ensure an accurate representation of plant community at each site.

The presence/absence data for each species recorded during the surveys was then compiled and overlaid onto geo-referenced satellite imagery using ERSRI ArcGIS software to create a visualization of the extent of each species within the waterbody. A map was also created for density/fullness along with a map for dominant species at each sampling location. An example of these maps can be found in Figure 4 below and the full set of maps from the 2017 and 2022 surveys can be found in Appendix B and C respectively.

Figure 4. Map showing the presence of Potamogeton amplifolius in St. Charles Lake, 2017.

Results

A total of 18 and 16 aquatic plant species were recorded in 2017 and 2022 respectively across the 304 sampling locations on St. Charles Lake. The total number of sampling points in which each aquatic plant species was present is shown in Table 1. The four most frequent species recorded in the lake in both 2017 and 2022 are Eurasian Watermilfoil (*Mryiophyllum spicatum*), *Nitella spp*. (recorded as Muskgrass [*Chara spp*.] in 2017 report), Slender Pondweed (*Potamogeton pusillus*) and Northern Watermilfoil (*Myriophyllum sibiricum*).

Density/fullness of the aquatic vegetation samples was first recorded for St. Charles Lake in 2022. This measure was based on the average amount of vegetation coverage on the three rake tosses done at each site. These results were recorded as sparse, moderate, dense or no vegetation, the guide used for the fullness/density ratings, along with images of field examples can be found in Appendix D. A map of the density/fullness of each site for the 2022 surveys can be found in Figure 5. In total, 26% of sampling sites had sparse vegetation density, 35% had moderate vegetation density and 31% of sites had a dense vegetation rating. The remaining 8% of sites had no aquatic vegetation.

Figure 5. Fullness/Density of aquatic vegetation in St. Charles Lake 2022.

The 2022 survey introduced dominant species to the set of parameters measured during the St. Charles Lake surveys which was not recorded in original 2017 survey. Dominant species was estimated at each site based on frequency of occurrence and density of each species averaged over the three rake tosses. *Myriophyllum spicatum* was the dominant species at 105 sampling sites, followed by *Potamogeton pusillus* at 73 sites, *Nitella spp.* at 68 sites and *Myriophyllum tenellum* at 14 sites. A total of 13 species were dominant at one or more sampling locations during the surveys. Six sampling sites had no discernable dominant species. See Table 2.

Common Name	Scientific Name	# of Sampling Points Present - 2017	# of Sampling Points Present - 2022
Eurasian Watermilfoil	Myriophyllum spicatum	197	170
Nitella	Nitella spp.	161	140
Slender Pondweed	Potamogeton pusillus	154	138
Northern Watermilfoil	Myriophyllum sibiricum	103	65
Largeleaf Pondweed	Potamogeton amplifolius	24	16
Slender Watermilfoil	Myriophyllum tenellum	23	40
Common Pipewort	Eriocaulon aquaticum	20	10
Spiny-spore Quillwort	Isoetes echinospora	10	3
Yellow Water-lily	Nuphar lutea	8	6
White Water-lily	Nymphaea odorata	7	5
Richardson's Pondweed	Potamogeton richardsonii	6	7
Nodding Waternymph	Najas flexilis	3	6
Canadian Waterweed	Elodea canadensis	2	10
Wild Celery	Vallisneria americana	2	0
Sweet Gale	Myrica gale	1	1
Watershield	Brasenia schreberi	1	0
Water Smartweed	Persicaria amphibia	1	0
Leafy Pondweed	Potamogeton foliosus	1	0
Rush	Juncus spp	0	1
Variable-leaf Pondweed	Potamogeton gramineus	0	2

Table 2. Number of sites with dominant species during 2022 surveys

Species Name	# of Sites Where Dominant
Myriophyllum spicatum	105
Potamogeton pusillus	73
Nitella spp.	68
Myriophyllum tenellum	14
Eriocaulon aquaticum	2
Nymphaea odorata	2
Potamogeton amplifolius	2
Potamogeton richardsonii	2
Isoetes echinospora	1
Juncus spp.	1
Myriophyllum sibiricum	1
Najas flexilis	1
Potamogeton gramenius	1
No Dominant Species	6

Discussion

The results from the 2017 and 2022 surveys provide valuable insight into the aquatic plant species composition in St. Charles Lake and can be examined further to determine if the survey methodology can provide a means of monitoring the spread of invasive EWM in St. Charles Lake and other Greater Sudbury area lakes over time.

The 2017 and 2022 survey results cannot be compared based on dominant species or density as these measurements were only recorded in the latter year. Results from both years can, however, be compared in terms of presence/absence and frequency in which EWM was growing alone, growing in mixed stands of EWM and native vegetation and sites where only native vegetation was present. In 2022, EWM was most frequently the dominant species (34.5% of sites), occurring alone at only 9.9% of sites. This is a slight increase from 2017 where EWM was found to be growing alone at 7.9% sites. There was an overall decrease in the sites that contained both native and invasive species together, down from 173 sites in 2017 to 140 sites in 2022. This is contrasted by an increase in sites that contained exclusively native species, up from 81 sites in 2017 to 110 sites in 2022, see table 3 below. These results show that, although EWM is present at most of the sampling sites, there was an overall decrease in presence of EWM within the lake down from 197 sites in 2017 to 170 sites in 2022.

	Eurasian Watermilfoil Only	Native Species Only	Mixture of Eurasian Watermilfoil & Native Species	No Vegetation Present
2017 Number of Sampling Sites	24 (7.9%)	81 (26.6%)	173 (56.9%)	26 (8.6%)
2022 Number of Sampling Sites	30 (9.9%)	110 (36.2%)	140 (46.1%)	24 (7.9%)

Table 3. Aquatic plant composition in St. Charles Lake 2017-2022

Overall, the frequency of most species decreased between 2017 and 2022, which is reflected in the total number of occurrences of each species found in the lake. In 2017 there were 724 total occurrences of all species which dropped to 620 total occurrences in 2022. While the number of individual occurrences of each species was less in 2022 than in 2017, the proportion of each species found within the lake between survey years remained relatively stable with no major increase in the proportion of the four most common species recorded. For example, the proportion of EWM was 27.2% of all occurrences in 2017 and 27.4% in 2022, see Figure 6.

Figure 6. Proportion of species found within St. Charles Lake for 2017 and 2022 surveys.

While not true macrophytes, charophyte species, such as those of the genera *Nitella* and *Chara*, are included in this report. These charophytes are a form of green macroalgae and fill the same ecological niche in a lake, generally growing on muddy substrates and providing habitat for micro and macro invertebrates that in turn provide food for fish and other wildlife [6]. These charophytes are similar in that they do not possess roots but instead grow on the lake bottom using root-like rhizomes that anchor them to the bottom substrates. *Nitella spp.* was found throughout St. Charles Lake and was one of the most common species in both 2017 and 2022, frequently found growing at deep to moderate depths. The frequency and density of the *Nitella spp.* found in the lake along with its ecological influences warrant its inclusion in the list of species identified.

In 2022, *Nitella spp.* was the second most abundant species found (140 sampling locations, 46% of all sites), and was the most dominant species at 68 of those sampling sites, the third most common dominant species. These values are down from the 2017 surveys in which *Nitella spp.* occurred at 161 sampling locations, 52.9% of all sampling sites. Although there was a reduction in the total number of sites in which *Nitella spp.* was present, there were more sites where *Nitella spp.* occurred alone, up from 8 sites in 2017 to 34 sites in 2022.

When comparing the surveys conducted on St. Charles Lake to other surveys of lakes in the Greater Sudbury, the frequency of *Nitella/Chara* at sampling sites is within the range of expected values for these species (see Table 4). A 2011 survey of Galway Lake in New York found that *Nitella/Chara* was present at 83% of 69 sampling locations [7]. The Minnesota Department of Natural Resources has conducted aquatic vegetation surveys on 42 lakes in the state with the frequency of charophytes ranging between 0%-72% of sites on these lakes, with 19 of these lakes having frequencies at or above 25% of sampling sites [8].

Lake Name	Survey Year	Number of Sampling Sites	% of Sites with Charophytes
St. Charles Lake	2017/2022	304	52.9%/46.0%
Richard Lake	2018	260	28.1%
Robinson Lake	2020	214	42.0%
Minnow Lake	2019	166	85.5%

Table 4. Percent of sampling sites containing charophytes on Sudbury area lakes.

The total number of aquatic plant species, which is known as 'species richness', remains high with only a slight decrease in overall species richness between 2017 and 2022. Species richness was 18 and 16 in 2017 and 2022, respectively. A study of 99 lakes in Connecticut found that the mean species richness of native plants was 11.3, with a range of 1-27 species, and 1.7 for invasive plant species, with a range of 0-4 invasive species per lake (EWM was the most common invasive plant) [9]. The aquatic vegetation mapping conducted on 42 Minnesota lakes by the Minnesota DNR found the mean lake species richness of native species to be 12.6, with a range of 4-28 species, and 1.2 for invasive plant species, with a range of 0-2 invasive species per lake. On St. Charles Lake, a slight reduction in the average species richness per sampling site was noted between the survey years (2.38 species/site to 2.03 species/site).

Compared to other surveyed lakes in Greater Sudbury by the Lake Water Quality Program, species richness in St. Charles Lake remains high, only surpassed by Whitewater Lake, which is 23 times larger in area (Table 5).

Table 5. Species richness of St. Charles Lake compared to other Greater Sudbury area lakes surveyed through theCity's Lake Water Quality Program

Lake Name	Survey Year	Species Richness	Lake Area (ha)
St. Charles Lake	2017/2022	18/16	41.3
Richard Lake	2018	14	83.6
Robinson Lake	2020	12	33.6
Minnow Lake	2019	8	20.9
Whitewater Lake*	2021	21	949.1

*Survey methodology used on Whitewater Lake differed from other lakes surveyed through the CGS Lake Water Quality Program.

Other studies of aquatic plant populations within freshwater lakes have used a variety of survey techniques other than presence/absence to determine the abundance of each species within surveyed lakes. Some of these studies measure the abundance of each species in each rake sample. Such measurements could help supplement dominant species information and provide greater detail on species composition within any given lake [9]. Measures of species abundance will be assessed for use in future surveys of Greater Sudbury lakes.

The St. Charles Lake aquatic vegetation surveys provide valuable insight into the dynamics of the aquatic plant community over time. Tracking changes in the size of individual EWM beds would require a more detailed survey approach than the current method. This is mainly due to the relatively wide distance between sampling points (~30-45m), which makes it difficult to track the spread of vegetation between the sampling points. The surveys on St. Charles Lake are tracking the frequency of EWM and its dominance in the aquatic vegetation community. The presence of EWM in St. Charles Lake impacts resident's enjoyment of water-based recreational activities such as boating and swimming. This invasive species has not, however, caused the extirpation of native aquatic plant species within the lake or a decrease in species richness overall which remains high and comparable to other Greater Sudbury lakes. Future surveys will reveal if this lake's diverse native plant community will be sufficient to prevent an expansion of EWM within it.

References

- [1] St. Charles Lake Local Lake Description. (n.d.). City of Greater Sudbury. 2023. https://www.greatersudbury.ca/play/beaches-and-lakes/lakes/local-lake-descriptions/stcharles-lake/
- [2] Burrows, G., Bernier, M., Shultz Report, B., Corston, A., Gillespie, M., & Gunn, J. (2014). St. Charles Lake Urban Lakes Fisheries Study 2014. Vale Living with Lakes Centre - Laurentian University. https://laurentian.ca/assets/files/Living-With-Lakes/Reports/St_-Charles-Lakes-Urban-Fisheries-Study-2014.pdf
- [3] Mikulyuk A, Hauxwell J, Rassmussen P, Knight S, Wagner KI, Nault ME, Ridgely D. (2010). Testing a methodology for assessing plant communities in temperate inland lakes. Lake Reserv Manage 26:54–62.
- [4] Hauxwell, J., S. Knight, K. Wagner, A. Mikulyuk, M. Nault, M. Porzky and S. Chase. (2010).
 Recommended baseline monitoring of aquatic plants in Wisconsin: sampling design, field and laboratory procedures, data entry and analysis, and applications. Wisconsin Department of Natural Resources Bureau of Science Services, PUB-SS-1068 2010. Madison, Wisconsin, USA
- [5] GPS Accuracy. (n.d). Garmin Ltd. (2019). https://support.garmin.com/en-CA/?faq=aZc8RezeAb9LjCDpJpITY7.
- [6] Ditomaso, J. M., Kyser, G. B., et al. (2013). *Weed control in natural areas in the Western United States* (p. 544). University Of California, Weed Research and Information Center.
- [7] Eichler, L. (2011). An Assessment of Aquatic Plant Growth in Galway Lake, Saratoga County, New York. https://gla.aim.hosting/wp-content/uploads/2021/07/Galway-Lake-Plant-Survey-Report-2011.pdf
- [8] Aquatic Vegetation Reports / Minnesota DNR. (n.d.). Www.dnr.state.mn.us; Minnesota Department of Natural Resources. Retrieved January 20, 2023, from https://www.dnr.state.mn.us/eco/pubs_aquatics/aquatic_reports.html

[9] Capers, R. S., Selsky, R., Bugbee, G. J., & White, J. C. (2009). Species richness of both native and invasive aquatic plants influenced by environmental conditions and human activity. *Botany*, 87(3), 306–314. https://doi.org/10.1139/b08-144 Appendix A

St. Charles Lake Sampling Locations

ID	UTM NAD83 (Easting)	UTM NAD83 (Northing)
1	498434.980	5144090.661
2	498383.299	5144058.555
3	498428.085	5144065.450
4	498331.859	5144033.749
5	498383.704	5144033.749
6	498428.085	5144033.749
7	498472.466	5144033.749
8	498516.846	5144033.749
9	498558.793	5144031.316
10	498294.943	5144002.048
11	498339.324	5144002.048
12	498383.704	5144002.048
13	498428.085	5144002.048
14	498472.466	5144002.048
15	498516.846	5144002.048
16	498561.227	5144002.048
17	498218.550	5143972.327
18	498249.573	5143975.295
19	498294.943	5143970.348
20	498339.324	5143970.348
21	498383.704	5143970.348
22	498428.085	5143970.348
23	498472.466	5143970.348
24	498516.846	5143970.348
25	498561.227	5143970.348
26	498597.901	5143967.914
27	498206.182	5143938.647
28	498250.563	5143938.647
29	498294.943	5143938.647
30	498339.324	5143938.647
31	498383.704	5143938.647
32	498428.085	5143938.647
33	498472.466	5143938.647
34	498516.846	5143938.647
35	498561.227	5143938.647
36	498601.650	5143938.647
37	498214.106	5143909.242
38	498250.563	5143906.947
39	498294.943	5143906.947
40	498339.324	5143906.947

ID	UTM NAD83 (Easting)	UTM NAD83 (Northing)
41	498383.704	5143906.947
42	498428.085	5143906.947
43	498472.466	5143906.947
44	498516.846	5143906.947
45	498561.227	5143906.947
46	498599.524	5143906.136
47	498661.861	5143912.389
48	498701.623	5143909.548
49	498250.563	5143875.246
50	498294.943	5143875.246
51	498339.324	5143875.246
52	498383.704	5143875.246
53	498428.085	5143875.246
54	498472.466	5143875.246
55	498516.846	5143875.246
56	498561.227	5143875.246
57	498649.988	5143875.246
58	498694.368	5143875.246
59	498732.002	5143879.153
60	498826.890	5143870.299
61	498605.607	5143875.246
62	498428.085	5143843.546
63	498472.466	5143843.546
64	498516.846	5143843.546
65	498561.227	5143843.546
66	498605.607	5143843.546
67	498649.988	5143843.546
68	498694.368	5143843.546
69	498738.749	5143843.546
70	498783.130	5143843.546
71	498827.510	5143843.546
72	498871.891	5143843.546
73	498916.271	5143840.702
74	498960.652	5143843.546
75	499005.033	5143843.546
76	499046.217	5143840.705
77	498472.466	5143811.845
78	498516.846	5143811.845
79	498561.227	5143811.845
80	498605.607	5143811.845

St. Charles Lake Waypoints 1/3

ID	UTM NAD83 (Easting)	UTM NAD83 (Northing)
01	(Lasting)	(NOI tillig)
01	498049.988	5143811.845
82	498094.308	5143811.845
03	498738.749	5143811.845
84	498783.130	5143811.845
85	498827.510	5143811.845
86	498871.891	5143811.845
8/	498916.271	5143811.845
88	498960.652	5143811.845
89	499005.033	5143811.845
90	499049.413	5143811.845
91	499093.794	5143811.845
92	498437.890	5143778.068
93	498472.466	5143780.145
94	498516.846	5143780.145
95	498561.227	5143780.145
96	498605.607	5143780.145
97	498649.988	5143780.145
98	498694.368	5143780.145
99	498738.749	5143780.145
100	498827.510	5143780.145
101	498783.130	5143780.145
102	498871.891	5143780.145
103	498916.271	5143780.145
104	498960.652	5143780.145
105	499005.033	5143780.145
106	499049.413	5143780.145
107	499093.794	5143780.145
108	499130.259	5143787.071
109	498428.085	5143748.444
110	498472.466	5143748.444
111	498516.846	5143748.444
112	498561.227	5143748.444
113	498605.607	5143748.444
114	498649.988	5143748.444
115	498694.368	5143748.444
116	498738.749	5143748.444
117	498783.130	5143748.444
118	498827.510	5143748.444
119	498871.891	5143748.444
120	498916.271	5143748.444

	UTM NAD83	UTM NAD83
ID	(Easting)	(Northing)
121	498960.652	5143748.444
122	499005.033	5143748.444
123	499049.413	5143748.444
124	499093.794	5143748.444
125	499126.947	5143760.652
126	498428.085	5143716.744
127	498472.466	5143716.744
128	498516.846	5143716.744
129	498649.988	5143716.744
130	498694.368	5143716.744
131	498738.749	5143716.744
132	498783.130	5143716.744
133	498916.271	5143716.744
134	499174.145	5143713.776
135	498428.085	5143685.043
136	498465.976	5143689.505
137	498516.846	5143685.043
138	498549.563	5143679.098
139	498649.988	5143685.043
140	498694.368	5143685.043
141	498738.749	5143685.043
142	498783.130	5143685.043
143	498916.271	5143685.043
144	498951.253	5143685.043
145	499095.011	5143678.959
146	499141.637	5143687.517
147	499182.555	5143685.043
148	499226.935	5143692.146
149	499271.316	5143685.043
150	498389.386	5143661.155
151	498428.085	5143653.343
152	498466.382	5143649.693
153	498524.761	5143653.343
154	498561.227	5143653.343
155	498649.988	5143653.343
156	498694.368	5143653.343
157	498738.749	5143653.343
158	498783.130	5143653.343
159	498827.510	5143653.343
160	498871.891	5143653.343

St. Charles Lake Waypoints 2/3

	UTM NAD83	UTM NAD83
ID	(Easting)	(Northing)
161	498916.271	5143653.343
162	498960.652	5143653.343
163	499049.413	5143653.343
164	499093.794	5143653.343
165	499138.174	5143653.343
166	499182.555	5143653.343
167	499227.646	5143656.184
168	499271.316	5143653.343
169	498394.760	5143623.773
170	498428.085	5143621.642
171	498472.466	5143621.642
172	498516.846	5143621.642
173	498561.227	5143621.642
174	498605.607	5143621.642
175	498649.988	5143621.642
176	498694.368	5143621.642
177	498738.749	5143621.642
178	498783.130	5143621.642
179	498827.510	5143621.642
180	498871.891	5143621.642
181	498916.271	5143621.642
182	498960.652	5143621.642
183	499005.033	5143621.642
184	499049.413	5143621.642
185	499093.794	5143621.642
186	499138.174	5143621.642
187	499182.555	5143621.642
188	499231.552	5143621.642
189	499277.708	5143621.642
190	498389.788	5143589.942
191	498428.085	5143589.942
192	498472.466	5143589.942
193	498516.846	5143589.942
194	498561.227	5143589.942
195	498605.607	5143589.942
196	498649.988	5143589.942
197	498694.368	5143589.942
198	498738.749	5143589.942
199	498783.130	5143589.942
200	498827.510	5143589.942

	UTM NAD83	
ID	(Easting)	UTM NAD83 (Northing)
201	498871.891	5143589.942
202	498916.271	5143589.942
203	498960.652	5143589.942
204	499005.033	5143589.942
205	499049.413	5143589.942
206	499093.794	5143589.942
207	499138.174	5143589.942
208	499182.555	5143589.942
209	499226.935	5143589.942
210	499271.316	5143589.942
211	499306.425	5143594.774
212	498398.693	5143558.241
213	498428.085	5143558.241
214	498472.466	5143558.241
215	498516.846	5143558.241
216	498561.227	5143558.241
217	498605.607	5143558.241
218	498649.988	5143558.241
219	498694.368	5143558.241
220	498738.749	5143558.241
221	498783.130	5143558.241
222	498827.510	5143558.241
223	498871.891	5143558.241
224	498916.271	5143558.241
225	498960.652	5143558.241
226	499005.033	5143558.241
227	499049.413	5143558.241
228	499093.794	5143558.241
229	499138.174	5143558.241
230	499182.555	5143558.241
231	499226.935	5143558.241
232	499271.316	5143558.241
233	499312.501	5143558.596
234	498428.085	5143526.541
235	498472.466	5143531.982
236	498516.846	5143526.541
237	498561.227	5143526.541
238	498605.607	5143526.541
239	498649.988	5143526.541
240	498694 368	5143526 541

St. Charles Lake Waypoints 3/3

Б	UTM NAD83	UTM NAD83	
244	(Easting)		
241	498738.749	5143526.541	
242	498783.130	5143526.541	
243	498827.510	5143526.541	
244	498871.891	5143526.541	
245	498916.271	5143526.541	
246	498960.652	5143526.541	
247	499005.033	5143526.541	
248	499049.413	5143526.541	
249	499093.794	5143526.541	
250	499138.174	5143526.541	
251	499182.555	5143526.541	
252	499226.935	5143526.541	
253	499271.316	5143526.541	
254	499310.750	5143523.572	
255	498516.846	5143494.840	
256	498561.227	5143494.840	
257	498605.607	5143494.840	
258	498649.988	5143494.840	
259	498694.368	5143494.840	
260	498729.964	5143499.252	
261	498786.780	5143500.518	
262	498827.510	5143494.840	
263	498871.891	5143494.840	
264	498916.271	5143494.840	
265	498960.652	5143494.840	
266	499005.033	5143494.840	
267	499043.735	5143494.840	
268	499104.745	5143495.246	
269	499138.174	5143494.840	
270	499182.555	5143494.840	
271	499226.935	5143494.840	
272	498516.846	5143459.677	
273	498561.227	5143463.140	
274	498605.607	5143463.140	
275	498649.988	5143463.140	
276	498694.368	5143463.140	
277	498831.468	5143464.129	
278	498871.891	5143463.140	
279	498916.271	5143463.140	
280	498960.652	5143463.140	

ID	UTM NAD83 (Easting)	UTM NAD83 (Northing)
281	499011.522	5143460.301
282	499138.174	5143463.140
283	499182.555	5143463.140
284	499226.935	5143463.140
285	498552.817	5143434.407
286	498614.485	5143431.439
287	498654.959	5143431.439
288	498702.891	5143431.084
289	498871.891	5143431.439
290	498907.859	5143427.579
291	499172.661	5143438.365
292	499212.749	5143437.929
293	498620.824	5143399.739
294	498660.291	5143399.739
295	498704.315	5143399.739
296	498875.801	5143405.071
297	498620.709	5143368.038
298	498661.007	5143367.683
299	498707.876	5143368.749
300	498640.746	5143335.982
301	498685.482	5143336.338
302	498721.455	5143337.099
303	498649.988	5143304.637
304	498694.368	5143304.637

Appendix B

2017 St. Charles Lake Vegetation Mapping Results

red Private Road 54

Ursa Court

ed Private Road 54

Ursa Court

Appendix C

2022 St. Charles Lake Vegetation Mapping Results

Legend

Dominant Species (from most dominant to least (with count))

Eurasian Watermil-foil (105) Slender Pondweed (73) Nitella spp. (68) Slender Watermil-foil (14) No Dominant Species (2) Common Pipewort (2) White Water Lily (2) Large Leaf Pondweed (2) Richardson's Pondweed (2) Spiny Spored Quillwort (1) Juncus spp. (1) Northern Watermil-foil (1) Canada Waterweed (1) Slender Niad (1) Grassy Pondweed (1)

St Charles Lake 2022

 $\mathbf{\Theta}$

100

25 50

0

Dominant Species

Data collected in August 2022 Map created on December 14, 2022 Created by GIS Operations

Ursa Cour

Leaend
Fullness

Sparse

Moderate Dense

No Vegetation

ate Road 54

Ursa Court

St Charles Lake 2022 Fullness $\mathbf{\mathbf{b}}$ Data collected in August 2022 Map created on December 14, 2022 Created by GIS Operations 100 Meters 0 25 50 arles Lake Road

Ursa Court

ed Private Road 54

Appendix D

Aquatic Vegetation Mapping Density/Fullness Guide

Table 6. Illustration of rake fullness/density rating used for the survey. Adapted from Hauxwell etal, 2010 [4]

Density/Fullness	Coverage Example	Description	
Sparse	A MARKEN AND	Few plants present. There are not enough plants to entirely cover the length of the rake head in a single layer	
Moderate	and the second	There are enough plants to cover the length of the rake head in a single layer, but not enough to fully cover the tines.	
Dense	A starting to	The rake is completely covered, and the tines are mostly not visible.	

Sparse*

Moderate*

Dense*

*images taken by CGS staff during 2022 St. Charles Lake aquatic vegetation mapping survey